Physical Change - changes shape or appearance but not what it is made of.

Example: water and ice both are H₂O

Chemical Change - involves chemical reactions that breaks the chemical bonds of reactants to rearrange and make new products.

Example: carbon dioxide and water react to form glucose (sugar) and oxygen

Chemical Reactions

- Written as chemical formulas using symbols
- Atoms from the reactants are the atoms that form the products
 - Reactions must be balanced to show conservation of matter
- An arrow shows the reaction (breaking and making chemical bonds)
- Activation energy is needed for reactants to become products
- Reactions are either endothermic (absorb energy) or exothermic (release energy)

Label Diagram below

WHAT DO THE NUMBERS MEAN IN A CHEMICAL FORMULA????

Subscripts identify how many of that atom are in the compound.

Coefficient identify the quantity of the compound

Practice - Add the correct coefficient to balance the equations below.

$$2N_{2} + O_{2} \rightarrow 2N_{2}O + 4N = 36$$

$$2H_{2}O_{2} \rightarrow 2H_{2}O + O_{2} + 4H + 4O$$

$$N_{2} + 3H_{2} \rightarrow 2NH_{3} + 3N + 6H$$

$$CH_{4} + 2O_{2} \rightarrow CO_{2} + 2H_{2}O$$

$$1C + 4O + 4H$$

Enzymes

- Proteins that speed up chemical reactions by lowering the activation energy
- Biological catalysts ending in -ase
- Involved in metabolism (energy needed for all the chemical reactions in your body)
- Are NOT used up in the reaction
- Sensitive to pH and temperature changes (denatures protein changing shape and losing function)

DRAW line to represent reaction WITH an ENZYME.

Label the diagram below.

